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Unravel: A CASE Tool to Assist Evaluation

of High Integrity Software

Volume 2

Abstract

This is the second volume of a two volume report on unravel, a Computer Aided Software

Engineering (CASE) tool for software written in ANSI C, that can assist evaluation of high

integrity software by using program slices to extract computations for examination. In this

volume, we provide a user manual for unravel. This manual is intended to provide the user with

enough information to use unravel without any other reference. To this end, a brief simplified

description of program slicing is provided in addition to a tutorial example and a detailed

description of unravel operation. This user manual also discusses limitations of unravel and

how to deal with code containing extensions to ANSI C that would inhibit the correct operation

of unravel.

Certain trade ^^es and company productl^ 'mention^ in the text or identified. In no -

case sucihHtentification imply recoiririfendation or endorsement by the National ,

Instituteipf Sli^ards and Technology, hdr does it imply that the products are necessarily

the best lavailabfe for the purpose.

Trademarks

UNIX is a trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of M. I. T.
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1 Introduction

This volume describes the operation of version 2.1 of the program slicing tool, unravel,

developed by the National Institute of Standards and Technology (NIST). Development of

unravel was funded by both the United States Nuclear Regulatory Commission (NRC) and the

National Communications System (NCS) under contracts RES-92-005, FEN #L24803, and

DNR0461 15, respectively. The tool can be used to compute program slices of programs written

in ANSI C.

Program slicing can be used to transform a large program into a smaller one containing only

those statements relevant to the computation of a given variable. Program slices aid program

debugging, program maintenance, program understanding, and automatic integration of program

variants.

The users of unravel are assumed to have a working knowledge of computers and ANSI C, but

they may not be familiar with UNIX, POSEX^ or program slicing.

Unravel is intended to support the understanding and evaluation of software by allowing the user

to investigate a program through program slices.

To achieve the goal of making unravel a portable and easy to use slicing tool, the following

general requirements were met:

• The user must be able to execute unravel with minimal knowledge of the platform on

which it resides.

• The user must be able to interactively specify criteria for computing program slices.

• The user must be able to view program slices on-screen.

• The user must be able to perform logical set operations (e.g., intersections) on program

slices.

• The user must be able to use unravel without needing to understand the intrinsics of the

program; hence a user manual and user interface must contain all operational information.

• The implementation must comply with standards for operating system interface POSIX,

ANSI C, and the X Window System.

^POSDC, Portable Operating Systems, FIPS 151-2 (ISO/IEC 9945-1).
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Section 2 explains program slicing and gives an example of using unravel to examine a small

program. Details of unravel operation are given in section 3. Section 4 discusses using unravel

on non-ANSI C programs. The limitations of unravel and assumptions about source code to be

analyzed are discussed in section 5.
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2 Unravel Description

Unravel is a tool for program understanding that uses program slicing to identify statements

relevant to some computation. This section describes program slicing, the software architecture

of unravel, a scenario for using unravel, and presents a detailed example of using unravel. The

description of program slicing is a simplified discussion of the theory followed by an example

illustrating the steps in computing a program slice.

Some terminology about programs and program components needs to be clearly defined so that

the reader understands how unravel views an ANSI C program. It is important to understand

that unravel sees a program as a collection of procedures executed as a unit. A program has one

main procedure (called main) and some number of other procedures that are arbitrarily grouped

in one or more source files.

Source Program Statement: A statement written in a programming language. Statements

may be declarations, that define data types and variables, or executable, that specify some

action.

Procedure: A named set of source program statements, possibly with parameters, that

performs some action. Functions and subroutines are considered procedures.

Source Program File: A file containing source program statements for zero or more

procedures and declarations. A source program file is also called a module.

C Preprocessor: A standard part of any ANSI C compiler used to process preprocessor

directives identified by a pound sign (#) as the first non-blank character on a line.

Preprocessor directives are used to define constants, insert include files, select statements

for conditional compilation and define source macros.

Include File: A source file, specified by a #include directive, that the C preprocessor

inserts in the compilation of another source file. By convention, an include file name

should end in . h and should contain only declarations and C preprocessor directives; it

should not contain procedures or parts of procedures.

Program: A main procedure and the set of procedures called transitively by the main

procedure.

Source Program: The set of source program files and include files that define all the

procedures of a program. When a source program is compiled and linked, an executable

program is produced.

3



2.1 Program Slicing

Program slicing is a family of program decomposition techniques based on extracting statements

relevant to a computation in a program. A slice is a smaller program that reproduces a subset

of the original program’s behavior. This is advantageous since the slice can, by excluding

irrelevant statements, collect an algorithm for a given calculation that may be scattered

throughout a program. It is easier for a programmer interested in a subset of the program’s

behavior to understand the corresponding slice than to deal with the entire program. The utility

and power of program slicing comes from the potential automation of tedious and error prone

tasks. Research on program slicing is being conducted on program debugging, program testing,

program integration, parallel program execution and software maintenance. Several variations on

this theme have been developed, including program dicing, dynamic slicing and decomposition

slicing.

An informal definition of a program slice (taken at statement n on variable v) is all statements

that might affect the value that v has just before control reaches statement n. A slicing criterion

defines the starting place for a program slice. It is eomposed of the statement n and the variable

V. Statements are included in a program slice with either a direct influence or an indirect

influence on the criterion variable. A statement assigning a value to a variable that could

influence the value of the criterion variable at the criterion statement is a direct influence. A
compound statement (e.g., for or while) that controls execution of another statement included in

the slice is an indirect influence.

This is not intended to be a complete discussion of program slicing but, an overview to give the

user insight into the behavior of unravel. Some language features such as pointers and procedure

calls introduce complications that would require lengthy discussion.

2.1.1 Creating a Flow-Graph

To compute program slices, a program is first represented as a flow-graph of nodes annotated

with lists of variables assigned a value or used at each node and directed edges indicating

control-flow. A flow-graph node roughly corresponds to an executable statement, however some

statements such as a for statement are divided into several nodes to represent the various parts

of the for statement that do control variable initialization, loop termination testing and control

variable modification. The edges of the flow-graph connect each node, n, to the nodes

(statements) that could be executed after n. An example program is presented in Figure 2-1 with

the corresponding flow-graph in Figure 2-2 and the node number to line number mapping in

Figure 2-3. To understand the basies of transforming a program into a flow-graph here are the

rules to follow for programs composed only of assignment statements, if statements and while

statements. The flow-graph is composed of nodes that represent the statements and edges that

represent execution flow between pairs of statements.

• Each statement is represented by one or more flow-graph nodes. If the statement

generates more than one node then one node will be designated the entry node and one

4



node designated the exit node. The entry and exit nodes are used to connect directed

edges to the entry and exit nodes of other statements.

An assignment statement is represented by a single node. The node functions as both

entry and exit. An edge connects the node to the entry node of the next statement. An
edge connects the exit node of the previous statement to the assignment statement node.

In addition to the nodes representing the body, an if statement without an else part is

represented by two nodes; an if statement with an else needs three nodes. The entry node

represents the if and conditional expression and is connected to the entry node of the

statement in the then part of the if. The exit node of the then part is connected to a

separate exit node created for the if statement. If there is an else part, the if statement

entry node connects to a third node that represents the else keyword. The else node

connects to the entry node of the statement in the else part. The exit node of the else part

connects to the if statement exit node. The exit node of the if statement connects to the

entry node of the next statement. The exit node of the previous statement connects to the

if statement entry node.

A while statement is represented by two nodes, an entry node representing the while

(condition) and an exit node. The entry node is connected to the entry node of the loop

body and to the exit node of the while. The exit node of the loop body is connected to

the entry node of the while. The exit node of the previous statement connects to the

while statement entry node.

1 main (

)

2 {

3 int red, green, blue, yellow
4 int sweet , sour , salty, bitter

;

5 int i ;

6

7 red = 1

;

8 blue = 5

;

9 green = 8

;

10 yellow = 2

;

11
12 red = 2*red;
13 sweet = red*green;
14 sour = 0;
15 i = 0;
16 while ( i < red) {

17 sour = sour + green;
18 i = i + 1;
19 }

20 salty = blue + yellow;
21 yellow = sour + 1;

22 bitter = yellow + green;
23
24 printf ("%d %d %d %d\n"

,

25 sweet , sour, salty, bitter)
26 exit ( 0 )

;

27 }

Figure 2-1: Slicing Example 1 flavors.c
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Figure 2-2: Unravel Slicing Example 1 Flow Graph
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2.1.2 Computing Program Slices

A program slice is computed for a given slicing criterion from an annotated flow-graph. These

annotations include variables referenced and defined at each flow-graph node and the active

variable set. The active set is the set of variables that the criterion variable depends on just

before program execution reaches the associated node.

A program can be represented by a flow-graph annotated by variables referenced and defined at

each flow-graph node. A program slice can be computed on a program for a given slicing

criterion with the help of one more annotation to the flow-graph, called the active variable set

or active set. The active set is the set of variables that the criterion variable depends on just

before program execution reaches the associated node.

The computation begins with all the active sets except for the active set for the slicing criterion

statement initialized to the empty set. The active set for the criterion statement is initialized to

the criterion variable. The slice is computed by propagating active sets across flow-graph nodes

until the active sets stabilize (i.e., stop changing). Computation of the active set for an arbitrary

node, n, is controlled by comparing variables defined at node n with the active sets of immediate

successor nodes by the following rules:

1. If none of the immediate successor active sets contain a variable defined at node n, then

node n is not in the slice unless it is part of a compound statement controlling execution

of other statements included in the slice. The active set of node n is the union of the

immediate successor active sets.

2. If node n assigns a value to a variable that is a member of the active set of some

immediate successor of n, then node n is included in the slice. The active set for node

n is the set of variables referenced at node n unioned with the union of immediate

successor active sets without the variable assigned.

When a statement is included in a slice that is part of a compound statement such as if or while,

the framework of the compound statement is included in the slice and any variables used in a

controlling condition are added to the active set of the compound statement.

To summarize the algorithm for computing a slice:

1. Create the flow-graph.

2. Select slicing criterion.

3. Set active set for criterion location to the criterion variable.

4. Propagate active sets over the entire flow-graph until no changes occur.
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5. A statement is included in the slice if it changes the active set or is a compound statement

containing a statement in the slice.

2.1.3 Slicing Example

Figure 2-3 presents the data-flow sets annotating the flow-graph from Figure 2-2 used in

computing program slices on the program of Figure 2-1. The columns labeled Node and Succ

(successor) represent the flow-graph of the program. The columns labeled Refs and Defs contain

the variables referenced and assigned-to (defined) at each node. The column labeled Req is the

required set for the node, used to list other nodes that are required by any slice containing the

given node. The required set is used to capture both syntactic relations such as the inclusion of

the opening and closing program braces (nodes 2 and 20), and control relations of if, while and

other compound statements (e.g., node 12 at line 17 requires node 11, the while on line 16).

For example, suppose we want to know how the value of the variable sweet printed at line 25

of Figure 2-3 is computed. The specification of a slicing criterion requires a variable and a node

in the flow-graph. Node 18 corresponds to the printf statement at line 25, therefore, the criterion

would be The active set for node 18 is initially {sweet}. Since nodes 9 through 18

do not assign a value to sweet no changes take place to the active set as it is propagated

backward, and these nodes are not included in the slice. Node 8 assigns a value to sweet based

on red and green and so node 8 (line 13) is included in the shce and sweet is replaced in the

active set by red and green at node 8. Node 7 is included in the slice because the active

variable red is assigned a value, however the active set does not really change with red being

replaced by red. At node 3, red is assigned a constant value and the node is added to the slice

and red is dropped from the active set. Node 5 is included in the slice and green is dropped

from the active set since green is assigned a constant value at node 5. The active sets are

summarized in Figure 2-4. The slice is now complete except for some syntactic dependencies

(nodes 1, 2 and 20) that are captured by the requires set.

8



Line Statement Node Succ Req Defs Refs

1 main() 1 2 — — —

2 { 2 3 1,20 — —

7 red = 1; 3 4 2 red —

8 blue = 5; 4 5 2 blue —

9 green = 8; 5 6 2 green —

10 yellow = 2; 6 7 2 yellow —

12 red = 2*red; 7 8 2 red red

13 sweet = red*green 8 9 2 sweet red,green

14 sour = 0; 9 10 2 sour —

15 i = 0; 10 11 2 i
—

16 while ( i < red) {
11 12,14 2,14 — i,red

17 sour = sour + green; 12 13 11 sour sour,green

18 i = i + 1; 13 11 11 i i

19 } 14 15 — — —

20 salty = blue + yellow; 15 16 2 salty blue,yellow

21 yellow = sour + 1

;

16 17 2 yellow sour

22 bitter = yellow + green; 17 18 2 bitter yellow,green

24 printf ("%d %d %d %d\n",

sweet,sour,salty ,bitter)

;

18 19 2 — sweet,sour

salty,bitter25

26 exit(O); 19 — — — —

27 } 20 — —

Figure 2-3: Slicing Example 1 Data-Flow Sets

9



Line Statement Active Node

1 main() 1

2 { 2

7 red = 1; 3

8 blue = 5; red 4

9 green = 8; red 5

10 yellow = 2; red,green 6

12 red = 2*red; red,green 7

13 sweet = red*green; red,green 8

14 sour = 0; sweet 9

15 i = 0; sweet 10

16 while ( i < red) { sweet 11

17 sour = sour + green; sweet 12

18 i = i + 1; sweet 13

19 } sweet 14

20 salty = blue + yellow; sweet 15

21 yellow = sour + 1

;

sweet 16

22 bitter = yellow + green; sweet 17

24 printf ("%d %d %d %d\n", sweet 18

25 sweet,sour,salty,bitter);

26 exit(O); 19

27 } 20

Figure 2-4: Slicing Example 1 Active Sets For S^s,sweet>

2.2 Unravel Architecture

This section describes the software architecture of unravel. Unravel operates on the source files

from a single directory. Figure 2-5 presents an overview of unravel. The circles represent files

and the boxes represent processing steps. Source files are transformed to corresponding language

independent format (LIF) files by the analyzer. The LIF files for a given program are bound

together by the linker into a single link file. The link file is the primary input to the sheer. To

10



use unravel, the source program files must first be analyzed and linked. A window based user

interface gives the user of unravel access to these components and helps manage the results.

Figure 2-5: Unravel Structure Overview

2.3 Operational Scenario

This section is a tutorial talking a user through an example of using unravel. The two most

important steps for using unravel successfully take place before unravel is executed. The user

should have a general understanding of the architecture of the source code in order to select

slicing criteria that can provide relevant information. Figure 2-6 presents an operational checklist

that serves as an overview and guide to unravel operation. The figure is repeated in Appendix

A for quick reference. The steps to using unravel follow.

1. Receive orientation to source code. Determine all the source files and #include files

that make up the program. The unravel user should have a general idea about global

variables, procedures and program structure in the source code.

2. Select slicing criteria. The unravel user should develop a list of questions about the

source code that can be answered by program slicing. For each planned slice, the user

should note the file name and line number where the slice should be computed along with

the file name, where the variable of a slicing criterion is declared. For local variables,

the procedure where the local variable is declared is needed for specifying the slicing

criterion.

3. Make the directory containing the program to analyze the current directory.

4. Execute the command; unravel. The unravel command displays a control panel called

the Main Control Panel.

11



1 Orientation Examine program structure

2 Select Slices Plan slices to compute

3 cd to source directory Make source code directory current

4 Unravel Execute unravel

5 Analyzer Click on Run Analyzer

Select Files Select files to analyze

Analyze Click on Analyze Selected Files

Exit Click on Exit to return to Main Control Panel

6 Review Results Examine Last Analysis in Review History menu

Navigate Use scroll bar to navigate

Done Click on Done to exit

7 Sheer Click on Run Sheer

Select Variable Use Select menu to pick variable

Select Location Click on criterion location to do slice

Navigate Use scroll bar to examine source code

Operations Use Operations menu to combine slices

Exit Click on Exit to return to Main Control Panel

8 Exit Click on Exit to stop unravel

Figure 2-6: Unravel Operation Checklist

5. Click on the Run Analyzer button from the Main Control Panel. This displays the

Analyzer Control Panel. Select source files to analyze, then click on the Analyze

Selected Files button to analyze each source file in turn. A message is displayed if any

source files are not ANSI C. Click on the Exit Analyzer button to return to the Main
Control Panel.

6. Review analysis results. The Last Analysis entry of the Review History menu of the

Main Control Panel pops-up a summary of each analysis. If any source files are not

ANSI C, an error message identifies the problem location. The source file needs to be

brought into conformance with ANSI C by changing the source file and running the

analyzer again.

12
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7. Click on the Run Slicer button. If there is more than one program the Selection Control

Panel is displayed; click on the desired program to start the slicer on the selected

program. If there is only one main program, the Selection Control Panel is skipped and

the slicer starts on that program. The user selects slicing criteria and displays the slices.

When the user is finished computing slices, click on the Exit button to return to the Main
Control Panel.

2.4 Tutorial Example

This section describes using unravel on a short tutorial example. We will go through the steps

to run the analyzer and the slicer.

2.4.1 Orientation

The example source code in Figures 2-7 through 2-11 and in Figure 2-1 is provided with the

unravel distribution. The source code is located in the example subdirectory of the unravel

distribution. There are two example programs, flavors and refinery. The program flavors is

completely contained in the file flavors.c. The other program, refinery, is spread over five files;

refinery.c, refinery.h, input.c, cool.c and pressure.c.

1 typedef struct {

2 int value;
3 } sensor_rec , *sensor_ptr

;

4

5 int pressure , flow, volt , level

;

6 int pump_ok, f low_ok;
7 int presure_ok, level_ok;

Figure 2-7: Slicing Example 2 refinery.h

1 # include "refinery.h"
2 get_sensor_v (sensor_ptr s) { s->value
3 get_sensor_f (sensor_ptr s) { s->value
4 get_sensor_l (sensor_ptr s) { s->value
5 get_sensor_p (sensor_ptr s) { s->value

read_sensor ( ) ; }

read_sensor ( ) ; }

read_sensor ( ) ; }

read_sensor ( ) ; }

Figure 2-8: Slicing Example 2 input.c
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# include "refinery.h"
int coolant_sys (p, f

)

sensor_ptr P/f;
{

volt = p->value;
flow = f->value;
pump_ok = pump_undervolt (volt )

;

flow_ok = coolant_f low ( flow)

;

}

Figure 2-9: Slicing Example 2 cool.c

# include "refinery.h"
int pressure_sys (p, w)

sensor_ptr p,w;
{

pressure = p->value;
level = w->value;
pressure_ok = check_pressure (pressure)

;

level_ok = water_level ( level )

;

}

Figure 2-10: Slicing Example 2 pressures

# include "refinery.h"
main (

)

{

int p_a1arm, c_alarm, alarm;
sensor_rec pump_sensor, flow_sensor

;

sensor_rec pressure_sensor , level_sensor

;

while (1)

{

get_sensor_v (&pump_sensor )

;

get_sensor_f (Scflow_sensor ) ;

get_sensor_p ( &;pressure_sensor ) ;

get_sensor_l ( &level_sensor )

;

pressure_sys (&;pressure_sensor , &level_sensor

)

coolant_sys (&pump_sensor , &;flow_sensor ) ;

p_alarm = ! (pressure_ok && level_ok)

;

c_alarm = ! (pump_ok && flow_ok)

;

alarm = c_alarm
| |

p_alarm;
if (alarm) system_shutdown ( )

;

}

}

Figure 2-11: Slicing Example 2 refinery.c
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2.4.2

Slice Criteria Selection

For the program flavors we would like to examine the computation of sweet and sour and

evaluate any code common to these two computations. For the program refinery we would like

to examine the computation of pump_ok, level_ok, and a_dump.

After due consideration, the slices in Table 2-1 were selected.

Slicing Criteria

Variable Location

File Procedure Name File Procedure Line No.

refinery,h global pump_ok cool.c main 10

refinery .h global level_ok cool.c main 10

refmery.c main a_dump refmery.c main 22

flavors.c main sweet flavors.c main 25

flavors.c main sour flavors.c main 25

Table 2-1: Planned Slices

2.4.3 Setting Source Directory

The user should locate the source directory for this example, then use the UNIX cd command
to set the current directory.

2.4.4 Executing Unravel

Figure 2-13 displays the initial Main Control Panel on the example directory. Note the

following:

• Five source files are identified.

• None of the files have been analyzed or linked. Even though there are two main

programs in the directory, the programs have not been analyzed yet by unravel.

• At this point the user should run the analyzer. After the analysis is finished, then the

sheer can be run.

• To run the analyzer, the user moves the mouse cursor to the button labeled Run Analyzer

and clicks the left mouse button. The Analyzer Control Panel should appear in a few

seconds.

15



2.4.5 Executing the Analyzer

The analyzer examines the current directory for source program files and automatically places

the file on either a list of files to be analyzed or a list to be ignored. A source file that has been

analyzed since the last change to the source file is placed on the Files Not Selected list; a source

file that has not been analyzed or has been changed since its last analysis is placed on the

Selected Files list.

i® Unravel Version 2,1 Main Control Panel

I (Exit Unravel) (Run Analyz^ (Review HistQr^(Run Siic€r)(Hei^

Current directory: /export/users/jimmy/slice/doc/user/train

5 source files

0 files analyzed & up to date

5 source files not analyzed

0 files analyzed & out of date

0 main program files analyzed

0 main program files linked

0 duplicate procedures found

Figure 2-13: Initial Main Control Panel

Figure 2-14 displays the initial Analyzer Control Panel. Note the following:

• The five files are already selected since they have not been analyzed. All files need to

be analyzed so the user should click on the Analyze Selected Files button.

• When analysis starts, the Analyze Selected Files button changes its label to Stop

Analysis as in Figure 2-15. If the user clicks the left mouse button on Stop Analysis the

analysis stops after the current program analysis is finished.

• While the analysis is being performed, the status line indicates which program is being

analyzed and how many programs are selected for analysis.

• The status line indicates if any source programs were not ANSI C and could therefor not

be analyzed. This is usually caused by a missing include file or a non-ANSI language.
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After the analysis is complete, the user clicks on Exit Analysis to return to the main
control panel. Figure 2-16 displays the Main Control Panel after the analysis is

complete.

[•1B3 Unravel Version 2.1 Analyzer Control Panel

|(Exit AnalyzeO(File Seiection) (Analyze Selected File^(Clear^(Help^|

Status: waiting for seiection

CPP flags:

cool.c

fiavors.c

input.

c

presure.c
refinery, c

Dispiay status as analysis runs

Figure 2-14: Initial Analyzer Control Panel

Unravel Version 2.1 Analyzer Contro1 Panel

l(Exit Analyzer^ (File Selection) ( Stop Analysis Xci6^0(Help)|

(Analyzing fiavors.c (2 of 5) |

CPP flags:

Parse flags:

L

1

Selected Files Files Not Selected

cool.c

fiavors.c

input.

c

presure.c

refine ry.c

1
Description of object under mouse pointer is displayed here

|

Figure 2-15: Analyzer Control Panel During Analysis
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,0 Unravel Version 2.1 Main Control Panel

(Exit Unravel) (Run Analyzer) (Review History^ (Run Slicerj (Help)

Current directory: /export/users/jimmy/slice/doc/user/train

5 source files

5 files analyzed & up to date

0 source files not analyzed

0 files analyzed & out of date

2 main program files analyzed

0 main program files linked

0 duplicate procedures found

Figure 2-16: Main Control Panel After Analysis

2.4.6 Analysis Review

After the analysis is done the user should return to the Main Control Panel and review the

analysis results. To display the analysis results select the Last Analysis entry on the Review

History menu.

A summary of each source file analyzed is presented. If any syntax errors were found (i.e., the

source is not ANSI C), the location of the error in the source file is indicated. The error should

be repaired and the analyzer run again until there are no errors. Section 5.1 discusses what to

do with some common extensions to ANSI C.

2.4.7 Using the Sheer

This section describes invoking and using the sheer. This is a two step process; first, the

program to be sliced is selected, then the sheing criteria is specified and the slices examined.

2.4.7.1 Selecting a Program to Shce

After the analysis is complete and any syntax errors have been repaired, the user runs the sheer

by clicking on the Run Sheer button of the Main Control Panel. If there is more than one

program to choose from, the Selection Control Panel is displayed as in Figure 2-17. The user

should either click on a program file name or click on the Exit button. If the user clicks on the

Exit button, the Selection Control Panel pops-down and control returns to the main panel. To

select the program refinery.c the user clicks on that program name.
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Unravel Version 2.1 Program Selection Panel

(Exit, no SGlectiori) Status: waiting for seiection (H^
Main Program Fiies

fiavors.c refinery.

c

Display current status

Figure 2-17: Selection Control Panel

2.4.7.2 Executing the Sheer

After a program is selected from the Selection Control Panel, the Slice Control Panel pops-up.

The user can do the following with the Slice Control Panel:

1. Select a variable for a slicing criterion.

2. Select a statement location for a slicing criterion.

3. Navigate through the source file to examine the results of the slice.

4. Select an operation for combining two slices.

To compute the first slice from our list of planned slices in Table 2.1, the user needs to select

the global variable punip_ok. To select pump_ok the user does the following:

1. Move the mouse pointer over the Select button.

2. Push and hold the left mouse button. A menu with several choices should appear under

the Select button.

3. Drag the mouse down to the choice labeled Global Variable. The text should highlight

in reverse video.

4. Release the left mouse button. A pop-up list with two file names should appear. This

is a list of files where global variables are declared.

5. Click the left mouse button on the entry refinery.h. A second pop-up list of the global

variables declared in the selected file should appear.
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6. Click the left mouse button on pump_ok. Note that the second line on the display

contains the currently selected criterion variable.

To specify the location for the slicing criterion and initiate computing the slice do the following:

1. Find the location for the slice, line 10 in file cool.c, by moving the scroll bar until line

10 of the file cool.c comes into view. To move the scroll bar, position the mouse cursor

in the scroll bar, push and hold the middle mouse button, then drag the mouse up and

down to move the source text. When line 10 comes into view release the mouse button.

2. Move the mouse pointer to line 10 and click the left mouse button. This starts computing

the slice. The fourth line of the window should change color to indicate that a slice is

in progress. When the slice is finished, the color returns to normal.

3. Statements in the slice are highlighted in reverse video. Along the right edge of the

source text display window there is a vertical stripe called a tick bar that gives a visual

summary over the entire program of statements in the slice. Figure 2-18 illustrates the

results on the screen.

Figure 2-19 presents the results of slicing on level_ok at the same location. Note from the figure

that this slice is labeled secondary slice while the other slice is labeled primary slice. The terms

primary and secondary are used to label two slices for computing set operations on the slices.

To compute a secondary slice, the user clicks the criterion location with the middle mouse button

rather than the left mouse button.

Now that we have two slices we can intersect slices to determine if there is shared code. To

compute the intersection displayed in Figure 2-20, the user moves the mouse cursor to the

Operation button, pushes and holds the left mouse button, drags the mouse to the Intersection

entry and releases.

The slice on a_dump can be computed in similar fashion:

1. Select criterion variable (a_dump) by dragging the left mouse button down the Select

button menu to the Local Variable entry and then release the left mouse button.

2. To display the list of variables defined in main, select the main procedure in the pop-

up list of procedure names by clicking the left mouse button while the mouse cursor is

over main.

3. When the pop-up list of local variables declared in main appears select the variable

a_dump by clicking the left mouse button over a_dump.

4. Move the mouse pointer over line 22 and click the left mouse button to compute a slice

labeled primary, or click the middle mouse button to compute a slice labeled secondary.
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When the user is finished computing slices, the user clicks on Exit in the Slice Control Panel.

2.4.8 Exiting Unravel

When the user is finished with unravel, the user clicks on Exit in the Main Control Panel.
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Unravel Version 2.1 Program Slicer

(Exit) ^el ect^ (Operation^ (interrupt^ 18 nodes (Hel^
File: refinery.h Proc: <global var> Var

:
pump_ok

1

Primary: pump_okCglobal) 10(cool .c) Secondary: <none> 1

l| slice on pump_ok at line 32 (10 of cool .c)
||

1 # include "refinery.h"

102 main

int p_alarm,c_al arm, alarm;
sensor_rec pump_sensor , fl ow_sensor

;

sensor_rec presure_sensor , 1 evel _sensor

;

get_sensor_v(&pump_sensor)

;

get_sensor_f(&flow_sensor)

;

get_sensor_pC&presure_sensor)

;

get_sensor_l (&! evel _sensor)

;

presure_sys (&presure_sensor ,&1 evel_sensor)

p_alarm = ! (presure.ok && level_ok);
c_al arm = ! (pump_ok && fl ow_ok)

;

al arm = c_al arm
1 1

p_al arm

;

if (alarm) systenushutdown () ;

sensor_ptr p,f;

flow = f->value;

flow_ok = coolant_flow(flow)
;

# include "refinery.h"

8 ^^Bpump_ok = pump_undervol t(vol t)
;

10 }

Describe object under mouse pointer

Figure 2-18: Slice on pumpjok
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Figure 2-19: Slice on level_ok
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Unravel Version 2.1 Program Slicer

(Exit) ^e1 ect) Operation) interrupt) IS nodes

File: refinery. h Proc: <global var> Var: 1eve1_ok

Primary: pump_ok (g1 obal ) 10 (cool . c) Secondary : 1 evel _ok (g1 obal ) 10
(|

Intersection of pump_ok(g1oba1) lQ(coo1 .c) & 1eve1_ok (global) 10(pre;

1 # include "refinery.h"

102 main

4
5

6
7

9
10
11

12

13

14
15

16
17

18

19
20

1

2

3

4
5

6
7

8

9
10
1

i nt p_al arm , c_al arm , a1 arm

;

sensor_rec pump_sensor , fl ow_sensor

;

sensor_rec presu re_sensor , 1 evel _sensor

;

# i

int

a

get_sensor_vC&pump_sensor)

;

get_sensor_f(8iflow_sensor)
;

get_sensor_pC&presure_sensor)

;

get_sensor_1 C&leve1_sensor)
;

presure_sysC&presure_sensor ,&1 evel_sensor)

;

cool ant_sys(&pump_sensor ,&fl ow_sensor)

;

p_alarm = ! (presure_ok && level_ok);
c_al arm = ! (pump_ok && fl ow_ok)

;

al arm = c_al arm
1 1

p_al arm

;

if (alarm) system_shutdownQ

;

nclude "refinery.h"
cool ant_sys (p , f

)

sensor_ptr p,f;

volt = p->value;
flow = f->value;
pump_ok = pump_undervol t (vol t)

;

flow_ok = coolant_flow(flow)

;

}
# include "refinery.h"

Describe object under mouse pointer

Figure 2-20: Intersection of Slices on pumpjok and leveljok
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Unravel Version 2.1 Program Slicer

(Ex 1 ^e1 ect) ^perat 1 on) ^nterrup^ 26 nodes

File: refinery.c Proc: main Var: c_alarm

Primary: c_a1 arm(main) 22(refinery .c) Secondary: 1 evel_ok(gl obal

)

slice on c_alarm at line 22 (22 of refinery.c)

1 # include "refinery.h'

!o2 main

int p_alarm,c_al arm, alarm;
sensor_rec pump_sensor , f1 ow_sensor

;

sensor_rec presure_sensor , 1 evel _sensor

;

get_sensor_v(&pump_sensor)

;

get_sensor_f (&fl ow_sensor)

•

get_sensor_p(&presure_sensor)

;

get_sensor_l (&level_sensor)
;

16 cool ant_
17 p_al arm
18 c_al arm

presure_sys C&presure_sensor ,&1 evel _sensor)

!cool ant_sys (&pump_sensor ,&fl ow_sensor)

I

a

alarm = c_alarm || p_alarm;
if (alarm) system_shutdown()

;

1 # include "refi nery.h"
Qint HggFfftlEB(p.f)
3 sensor_ptr p,f;

volt = p->value;
flow = f->value;
pump^ok = pump_undervol t (vol t)
fl ow^ok = cool ant_fl ow(fl ow)

; f

1 # include "refinery.h"

H

Describe object under mouse pointer

Figure 2-21: Slice on ajdump
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3 Operating Unravel

Unravel is implemented in ANSI C under UNIX with a user interface built with the Athena

Widgets of the MIT X Window System, running the X window system under the UNIX operating

system.

3.1

Using The Interface Control Panels

The interface control panels are each composed of several interface objects from the MIT Athena

Widget Set that the user can manipulate using the mouse to communicate with unravel. This

section discusses how the user can interact with each Athena Widget used by unravel.

Unravel uses the following interface objects, each of which is described in subsequent sections.

Object Function

Presents some information

Invokes some action (function) when pushed

Displays a fixed list of buttons

Displays a variable list of items for selection

Allows the user to enter text

Used to display more than one line of text

Used to specify visible subset of text window

Display Label

Button

Pull Down Menu
Pop-up List

Text Input Window
Text Window
Scroll Bar

3.1.1 Using a Mouse

Unravel uses a mouse with three buttons, referred to as left, middle and right. To interact with

an object the user first positions the mouse cursor, an image on the screen that tracks mouse

motion, over the object. Then the user does one of the following: types on the keyboard, clicks

a mouse button or drags the mouse. To click a mouse button means to push the button on the

mouse and then release the button. A double click is two mouse button clicks in a short (about

one second) time. To drag the mouse means to push a mouse button, move the mouse while

holding the button down and then release the button.

3.1.2 Display Label

Display labels are used to display information to the user. As the user requests unravel to do

tasks the displayed information changes to inform the user of actions taken. The user has no

direct input to a display label.
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3.1.3

Button

A button on an unravel control panel has an oval border. To push a button, position the mouse

cursor over the button and click the left mouse button. When the mouse button is pushed, the

button is highlighted in reverse video. If the mouse cursor is dragged outside the button,

highlighting is turned off and nothing happens if the button is released, otherwise, the button

invokes its function when the button is released.

3.1.4 Pull Down Menu

A pull down menu button has an oval border. Unravel uses menus to group related actions for

invocation by the user dragging the mouse. The user positions the mouse cursor over the menu

button, then presses and holds the left mouse button. The menu appears in a window under the

menu button. The user may drag the mouse cursor over the menu entries and release the button

on the entry that should be invoked. The current entry is indicated by reverse video. If the

button is released outside the menu nothing happens.

3.1.5 Pop-up List

Unravel uses pop-up lists for the user to select files, procedures or variables, usually for

specifying a variable in a slicing criterion. To select an item from a pop-up list, position the

mouse cursor over the item and click the left mouse button.

3.1.6 Text Input Window

A text input window is used to get text from the user. The mouse cursor must be positioned

somewhere within the text input window. The text input window has a text cursor shaped like

the caret character (^). Any characters typed are inserted at the text cursor. The text cursor can

be moved by positioning the mouse cursor over the desired location and clicking the left mouse

button. The character to the left of the text cursor can be removed by the delete key.

3.1.7 Scroll Bar

A scroll bar is usually used to control the display of information that needs more space than

allocated on the screen. Unravel uses scroll bars on text windows, text input windows and

pop-up lists. Scroll bars may be either horizontal or vertical. All three mouse buttons can be

used to manipulate the scroll bar when the mouse cursor is positioned within the scroll bar.

Left Click: Move the text forward by some amount (depends on the actual object but is

usually about 45% of the window length). The text in the controlled window does not

change until the button is released. A drag has no effect.

Middle Drag: The length of the scroll bar is scaled to the length of the text being

displayed. When the middle mouse button is pushed the text displayed in the window is
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adjusted so that the location of the start of displayed text corresponds to the location of

the mouse cursor in the scroll bar. If the mouse is dragged, the displayed text is

continuously updated to reflect the mouse cursor position. The drag does not have to

remain within the bounds of the scroll bar.

Right Click: Move the text backward by some amount (depends on the actual object but

is usually about 45% of the window length). The text in the controlled window does not

change until the button is released. A drag has no effect.

3.1.8 Text Window

A text window is used by unravel to display history logs and help screens. A text window has

scroll bars if the window is too small to display the text. The user can navigate through the file

by either the scroll bar or by searching for a string. To search for a string type CTRL-S to

pop-up a search control window. Enter the target string in the text input box just after the

Search for: label. Either the return key or the Search button starts the search. The next

instance of the search target can be found by either the return key or the Search button. There

is a Cancel button to pop-down the search control window when done.

3.2 User Interface Control Panels

The user interface displays four control panels and two pop-up information windows. The four

control panels are the following:

Main Control Panel: Allows the user to invoke analyzer and sheer and provides

relevant information about the current directory, directory name, number of source files,

number analyzed, number of main programs found and other information. The main

control panel is invoked by running the program unravel. The command takes an

optional command line argument of a directory name for the location of the source files

to analyze. If the source files are in the current directory, the command line argument

can be omitted. All the other control panels are invoked from the main control panel.

Analyzer Control Panel: Allows the user to select files, run the analyzer and

automatically scan for main programs.

Selection Control Panel: Allows the user to select a main program and runs the linker

on the selected main program followed by running the sheer on the linked program.

Slice Control Panel: Gives the user access to the program sheer, accepts a slicing

criterion interactively and displays the source program text in a scrollable window with

slice statements highlighted.
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All control panels have the following features:

• Control buttons on top row of the panel

• Leftmost button pops-down (exits) the panel

• Rightmost button pops-up the help display for the panel

• Help button sticks to right window edge on resize

• Other buttons keep same distance from left edge on resize

• Panel name in the window title bar

• Last line of panel displays a brief description of the object under the mouse pointer

• Help button short cuts (accelerators): pressing anywhere on the panel outside a text

window h, H or ? invokes help

• Exit button short cuts (accelerators): pressing anywhere on the panel outside a text

window q or Q exits the panel

• All top level control panel windows are created with an X Windows application class

name of Unravel so that X resources can be set for all panels at once (e.g., to set the

foreground color to red for all the control panels give the following resource specification

to xrdb: *Unravel*Foreground: red.)

Two application resources, runningFG and runningBG, are defined for analyzer and slicer.

These resources are a foreground and a background color that are used to indicate a lengthy

operation is in progress.

The two information pop-ups display a history of user activities and help text for each panel.

Both pop-ups are displayed by the same program. An information pop-up window consists of

a done button to dismiss (pop-down) the window and a scrollable text window.

3.2.1 Main Control Panel

The function of the Main Control Panel is to respond to user interaction with the panel. All

files are assumed to be in the current directory.

Unravel performs the following initializations:

1. Change to the directory specified on the command line, if one is provided.
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2. Initialize slice history to No slices computed this session

3. Initialize analysis history to No analysis done this session

4. Initialize history of current session to UNRAVEL directory name current date and time

The Main Control Panel displays the following information:

• Current directory name.

• Number of source files. This is a count of files with a .c extension.

• Number of files analyzed and up to date. The number of C files that have analysis files

such that the C file is older than the analysis files (i.e., the C file has not been changed

since the analysis files were created).

• Number of source files not analyzed. This is a count of files with the .c extension that

do not have analysis files.

• Number of files analyzed and out of date. The number of C files where the C file is

younger than the analysis files.

• Number of main program files analyzed. The number of main program files identified.

• Number of main program files linked. The number of main program files identified that

also have been linked.

• Number of duplicate procedures found. The number of procedures identified as

ambiguous (appearing in more than one file). This indicates that unravel cannot

determine which file contains the source code for some procedures. See section 5.2 for

an explanation of how to remove ambiguous procedures.

• Last line of panel displays a brief description of the object under the mouse pointer.

The Main Control Panel buttons invoke the following actions:

Exit: Performs the following:

1. Append the file HISTORY to HISTORY.LOG
2. Delete HISTORY file

3. Exit

Run Analyzer: The Run Analyzer button pops-up the Analyzer Control Panel.
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Review History: Pops-up a four item menu (Last Analysis, Last Slice, This Session or

All History), and displays the indicated history in a pop-up window.

Run Sheer: Pop-up a list of main programs that can be selected for slicing.

Help: Display general information about unravel and the Main Control Panel in a

pop-up window.

3.2.2 Analyzer Control Panel

The Analyzer Control Panel presents the user with:

• Buttons to control file selection, run the analyzer, clear analysis files and pop-up a help

window.

• A status line to give the user feedback on progress of the analysis of a set of files.

• Two text windows for specifying command line options to the C preprocessor and to the

unravel analyzer.

• A list of selected source files from the current directory.

• A list of not selected source files in the current directory.

• Last line of panel displays a brief description of the object under the mouse pointer

The Analyzer Control Panel buttons invoke the following actions:

Exit Analyzer This button Appends the file HISTORY-A to HISTORY and then exits.

File Selection The File Selection button pops-up a menu with the following four choices and

actions:

All Files: All source file names are placed in the selected list window. The not selected

list window will be empty.

No Files: All source file names are placed in the not selected list window. The selected

list window will be empty.

Analyzed Files: All source file names of files that have older .LIF, .T and .H files are

placed in the selected list window. The remaining source file names are placed in the not

selected list window.
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Files Not Analyzed: All source file names of files that have older .LIF, .T and .H files

are placed in the not selected list window. The remaining source file names are placed

in the selected list window.

Analyze Selected Files/Stop Analysis This button runs the analyzer on each selected file,

adding the contents of the C preprocessor options window to the C preprocessor command
line and adding the contents of the parser options window to the parser command line.

When the Analyzer Control Panel button is pushed the button label is changed from

Analyze Selected Files to Stop Analysis. If the Stop Analysis button is pressed,

unravel will not analyze any more of the selected files after the file currently being

analyzed is finished. As each file is analyzed, the file name currently being analyzed is

displayed on the status line along with a progress indication. The progress indication is

defined by the following: number each file in sequence starting from 1 in the order that

the files will be analyzed. Display the file’s sequence number and the total number of

files. The status line is set to the foreground and background colors specified in the

application resources runningFG and runningBG.

After all selected files have been analyzed, the map program is run automatically.

Clear Deletes the analysis files (.LIF, .H and .T) for each selected file and deletes the

SYSTEM file.

Help: The Help button displays a pop-up window of information about the analyzer

control panel.

The C preprocessor options text window allows the user to specify any C preprocessor options

that are normally used to compile the source code to be analyzed. The two most common
options are preprocessor symbol definition (-D) and include directory path (-1). When and how
to use the -D option depends on how the source code is usually compiled. The -I option is used

to specify the location (directory path) of include files not located in the current directory.

The parser options text window allows the user to specify options to the parser. The parser has

two options related to dynamic memory allocation that might be needed. There is a list of

function names that are assumed to allocate dynamic storage. When unravel encounters a call

to one of these functions a dynamic variable is created in the form &file_naine^line
number [sequence number] to represent any memory allocated by the statement. If the

function call result is cast to a pointer to a base type, the generated variable is declared to be of

the base type.

1. The -a option is specified to remove the default list of memory allocation procedures.

The default list is: malloc(), realloc() and calloc().

2. The option -f name adds procedure name to the list of memory allocation functions.
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There are several other options to the parser, intentionally undocumented, that are not useful to

the user of unravel but are important for debugging and performance analysis.

3.2.3 Selection Control Panel

The Selection Control Panel presents the user with:

• Exit and Help buttons

• A status line

• A list of main program source files from the current directory

• Last line of panel displays a brief description of the object under the mouse pointer

The Exit button pops-down the panel with no further action.

If a file from the list is selected, the file is linked, the Selection Control Panel is popped-down

and the slicer is called.

The status line initially indicates that select is waiting for the user to make a selection. After

a file is selected, the status line indicates that a file is being linked.

If there is exactly one main program file, the file is linked and the slicer is called without

bringing up the Selection Control Panel.

The Help button pops-up a file of information about the Selection Control Panel.

The slice history file is updated with a message indicating the file to be linked before the linker

is called. Any linker output is appended to the slice history file.

3.2.4 Slice Control Panel

The slicer accepts slicing criteria from the user, computes a program slice for each criterion

given, saves each slice for later recall and displays the program in a scrollable window. The

slicer presents the user with:

• Buttons to exit, to pop-up help and to interrupt a lengthy slice calculation.

• A display indicating slice size and slice calculation progress.

• A display of the currently selected slicing criterion variable.

• Menu of selection options for selecting slicing criterion variables, or previously computed

slices.
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• Menu of operations that can be performed on two selected slices.

• Display describing the contents of the scrollable window.

• Display of program source text in a scrollable window.

• Last line of panel displays a brief description of the object under the mouse pointer.

• Clicking a mouse button in the text window specifies the statement for the slicing

criterion and initiates the slice computation.

Primary slice and secondary slice has no significance other than being convenient names for two

slices when an operation such as intersection is performed on two slices.

The buttons do the following:

Exit: Append slice history to session history and then exit.

Interrupt: The Interrupt button does the following:

1. Stop computation of the slice and display partial results.

2. Mark the slice as partial and save.

Help: Pop-up the panel help file.

There are six information display windows on the control panel.

1. Slice Progress Window displays the current size of the slice being computed (or last

computed) in units of flow graph nodes. This window is located between the Interrupt

and Help buttons on the top line of the panel.

2. Criterion Variable Window displays the currently selected criterion variable, the file

where the variable is declared and the declaration scope. If the variable is global then

the scope is the word global, otherwise the name of the local procedure containing the

variable declaration. If an element is not defined, the word none is displayed. This

window is the second line of the panel.

3. Primary-Secondary Window displays the criteria for the current primary and secondary

slices. If there is no such slice, the word none is displayed. This window is the third

line of the panel.

4. Text Description Window describes the contents of the Text Window using one

Message in Table 3-1. This window is the fourth line of the panel.
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Contents Message

None Source File: file name

Slice Slice on criterion

Intersection Intersection of primary criterion & secondary criterion

Union Union of primary criterion & secondary criterion

Dice Primary criterion diced by secondary criterion

Dice S-P Secondary criterion diced by primary criterion

Marked Location of procedure name in file name

Call Tree Call tree of procedure name

Table 3-1: Operation Description

5. Text Window displays the program text with a scroll bar for navigation. Statements can

be designated for highlighting by the text window. Highlighting is used to indicate

statements that are members of a slice or the results of an operation on two slices. The

right margin of the text window contains a tick bar that is used to visually indicate the

location of highlighted statements throughout the entire program. The vertical length of

the tick bar is scaled to the length of the program in source file lines. A tick (horizontal

line) in the tick bar indicates that at that relative position in the display there are one or

more highlighted lines. The tick bar is adjacent to the scroll bar to facilitate scrolling to

highlighted regions of the text. Clicking the left or middle mouse button on the tick bar

scrolls the text window to the corresponding area of the program. Above the scroll bar

is an arrow shaped button that scrolls the text window up one line each time the left

mouse button is clicked when the mouse cursor is over the arrow button. Below the

scroll bar is a similar arrow shaped button to scroll text down.

6. Current Object Window describes the function of the object currently under the mouse

pointer. This window is the last line of the panel.

The Select menu is used to specify a criterion variable, to aid navigation by marking the location

of a procedure in the tick bar and to select a previously computed slice for display.

The Select menu has the following selections:

Local Variable: This entry is a two-step selection. First, a list of procedure names is

popped-up for the user to select one item. The list consists of all procedures that are

defined somewhere in the program. Procedures such as library routines that are used, but

not defined are not included in the list. The first entry in the list is No Selection. If a

36



procedure is selected, the procedure header, opening brace and closing brace are

highlighted, a list of variables declared local to the selected procedure is popped-up and

the list of procedure names is popped-down. If no procedure is selected, the procedure

list is popped-down. The Criterion Variable Window is updated with the selected items.

Global Variable: This entry is a two-step selection. First, a list of file names is

popped-up for the user to select one item. The list includes all source files (.c) in the

program and all header files (.h) that are included in the program. The first entry in the

list is No Selection. If a file is selected, a list of global variables declared in the

selected file is popped-up and the file list is popped-down. If no file is selected, the file

list is popped-down. The Criterion Variable Window is updated with the selected items.

Mark Proc: A list of procedure names is popped-up for the user to select one item. The

first entry in the list is No Selection. If a procedure is selected, the procedure header,

opening brace and closing brace are highlighted. The list is popped-down.

Show Call Tree: A list of procedure names is popped-up for the user to select one item.

The first entry in the list is No Selection. If a procedure is selected, the procedure

header, opening brace, closing brace and all the call sites for the selected procedure are

highlighted. The highlighting continues for each procedure containing a highlighted call

site until no more unhighlighted procedures are found. If a call site in controlled by a

conditional statement (e.g., if or while), the conditional statement is highlighted. The list

is popped-down.

Primary: Pops-up a list of previously computed slices. The first entry in the list is No
Selection. If an entry is selected, make the slice the primary and display the slice. The

list is popped-down.

Secondary: Pops-up a list of previously computed slices. The first entry in the list is No
Selection. If an entry is selected, make the slice the secondary and display the slice. The

list is popped-down.

The Operation menu has the following selections:

Dice: Highlights the statements of the primary slice that are not members of the

secondary slice and updates the text description window.

Dice S-P: Highlights the statements of the secondary slice that are not members of the

primary slice and updates the text description window.

Intersection: Highlights the statements in both the primary and secondary slice and

updates the Text Description Window.
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Union: Highlights the statements in either the primary or secondary slice and updates the

Text Description Window.

Clear: Removes all highlighting and updates the Text Description Window.

Clear Slice History: Deletes the saved slices.

The text window has four actions triggered by the mouse.

1 . Clicking a mouse button in the tick bar area scrolls the window to the corresponding area

of the program text.

2. The leftmost mouse button computes a primary slice.

3. The middle mouse button computes a secondary slice.

4. The rightmost mouse button highlights the current line.

The source program line under the mouse pointer when the mouse button is clicked specifies the

statement for the slicing criterion. If the specified slicing criterion has already been used to

compute a slice (without interruption), then the slice is not computed, but is retrieved and

displayed.

3.2.5 Help/History Pop-up

History and help information pop-ups are handled by a single program. The text may have either

horizontal or vertical scroll bars as needed. It is possible to search for a string by typing

CTRL-S and typing the target string in the search pop-up. There is a Cancel button to

pop-down the search control window when done.
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4 Solving Problems

This section discusses how to resolve two problems that can arise when using unravel. The first

problem occurs when the software to be analyzed is not strict ANSI C. The second problem can

occur when more than one program is being analyzed.

4.1 Source Code Not ANSI C

Unravel is designed for ANSI C and is strict about the language accepted. There exist C
compilers that for a variety of reasons have implemented extensions to the C language. When
these extensions involve additional data types, additional data attributes, additional keywords, or

changes to the language syntax, unravel cannot be used without first modifying the source code.

This section discusses how to accomplish these modifications.

Any unknown keywords or data types bring the unravel analyzer to a stop at that point with a

message indicating the line number and file. If there are a few deviations from ANSI C, it is

sometimes possible to make the program acceptable to unravel with a few small changes to the

source program under analysis. If there are a large number of extensions or there are any

significant syntactic additions then modifications to the source program may be too

time-consuming to be practical.

4.1.1 Additional Data Types

A common extension is to include additional data types in the C language. Provided that the

added data types do not also add significantly new semantics they can be handled by inserting

a #define preprocessor command to equate the new type to an existing builtin type. For

example, if a compiler adds a boolean type, the following preprocessor statement could be used

to equate boolean with int;

#define boolean int

4.1.2 Additional Data Attributes

Another common extension is additional data attributes. For example, a compiler might add the

keyword extended to indicate that floating point numbers should use 128 bits rather than the 64

bits used in double precision. This keyword can be eliminated by defining the keyword to be

null:

ttdefine extended
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4.1.3 Preprocessor Extensions

Sometimes the C preprocessor is extended. The extensions must be replaced in such a way that

the result of the ANSI C preprocessor used by unravel produces the same result as the vendor

C preprocessor. An alternative to replacing the extensions is to use the extended preprocessor

to preprocess the source program.

4.2 Ambiguous procedures

If the unravel user is interested in more than one source program the source files for all the

source program files can be in the same directory, however, if there are two or more functions

with the same name, unravel cannot determine which is the procedure that belongs with a given

main program.

The example in Figure 4-1 presents five source files (alpha. c, beta.c, theta.c, phi.c and web.c)

that correspond to two source programs. Source program alpha requires the files alpha.c, theta.c

and web.c. The second source program, beta, requires the files beta.c, phi.c and web.c.

If we run the unravel analyzer on all the these files, the analyzer reports that the procedure angle

is defined in more than one file (theta.c and phi.c). There are two possible ways to deal with

the problem, either move each set of source files for a given source program to a separate

directory or only analyze the source files for one source program at a time.

alpha .

c

int X;
main ( ) {

angle ( )

;

mangle ( )

;

}

theta.c
int X ;

angle ( ) { x = 1 ; }

web.c
int x,y;
mangle(){ printf
tangle () { printf

beta.c
int y;
main ( )

{

angle ( )

;

tangle ( )

;

}

phi.c
int y;
angle ( ) { y = 2 ;

}

( "X = %d\n" ,x) ;

}

( "y = %d\n" ,y) ;

}

Figure 4-1: Ambiguous Example

4.2.1 Separate Directories

To put each source program in separate directories, use the UNIX mkdir command to create a

directory for each program (i.e., one subdirectory for each main procedure), then move source

files (with the mv command) to the subdirectories where they belong. If a source file is used

40



by more than one source program, use the link command, In, to place a link to the source file

in each subdirectory.

mkdir alpha beta
mv alpha. c theta. c alpha
mv beta.c phi.c beta
In web.c alpha
In web.c beta

4.2.2 One at a Time

Alternatively, the user can analyze only files alpha.c, theta.c and web.c. Then the user runs the

sheer and selects alpha. After slicing on alpha is finished, the user can go back to the Analyzer

Control Panel and clear alpha.c and theta.c, then analyze beta.c and phi.c and run the sheer

on beta.
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5 Unravel Limitations and Assumptions

Unravel has limitations for several reasons. For example, an approximate solution to some
aspect of slicing may be implemented to avoid a severe performance penalty. Other limitations

arise from the static nature of program slicing. This section presents the most serious limitations.

5.1 Casts

Unravel ignores cast operations except where the cast is on the return value of the malloc

function. This can cause a problem when a variable is declared as one data type and then cast

to another data type. For example, consider the following code:

1 typedef struct {

2 int a;

3 int b; } ab_type;
4 int X [ 2 ]

;

5 ab_type *y;
6 . . .

7 y = (ab_type *) x;

8 y->b = 10;

Unravel loses the connection between the variable x and the object pointed to by y. Unravel

expects that y points to an object of type ab_type, however when unravel finds that y points to

X, unravel is unable to see that y->b is really x[l] because unravel expects to find x.b.

As a result, statements that influence the value of x are not in the slice. If there is one such cast

then a second slice could be computed on x at the cast statement and the two slices unioned

together.

5.2 Address Operator

Unravel expects the address operator (&) to be applied only to variables and not applied to

expressions. This turns out to be a design error that causes expression such as &:a->b to be

ignored. This can cause statements to be omitted from a slice.

5.3 Pointers

When computing active sets for a statement that dereferences a pointer variable each object that

the variable might point to should be added to the active set. At different locations in a program

the set of objects that a pointer could point to may be different. For each pointer, unravel

identifies all objects that the pointer might point to. This can cause statements to be included

in a slice that could be excluded with a more precise pointer tracking algorithm.
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Pointers to functions are ignored.

5.4 Unions

Unions are treated like structures by unravel. The union members appear to unravel as separate

data objects rather than overlapping objects.

5.5 Goto and Branch Statements

Unravel ignores unconditional branch statements (i.e., goto, break, and continue). In most

programs this does not change the content of computed slices in a significant way however, some

statements that should be in some slices are omitted. For example, in the following code a slice

on X should include all lines shown, however, if the break statement is ignored, lines 4 and 1

are omitted. Note that the statements missing are concerned with the calculation of another

variable (z) and do not have a direct role in the calculation of x. This problem will be addressed

in a later release of unravel.

1 z = a ;

2 while (y)

3 y--;
4 if (z)

5 X = w ;

6 }

5.6 Libraries

Unravel has no knowledge of any libraries that might be used by vendor code. This includes

the ANSI C library. Any library procedure call is assumed to not use or change any global

variable. Any variable whose address is passed to a library procedure is assumed to be changed,

and if a structure all members are assumed to be changed.

{

break;
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Appendix A: Unravel Quick Reference

1 Orientation Examine program structure

2 Select Slices Plan slices to compute

3 cd to source directory Make source code directory current

4 Unravel Execute unravel

5 Analyzer Click on Run Analyzer

Select Files Select files to analyze

Analyze Click on Analyze Selected Files

Exit Click on Exit to return to Main Control Panel

6 Review Results Examine Last Analysis in Review History menu

Navigate Use scroll bar to navigate

Done Click on Done to exit

7 Sheer Click on Run Sheer

Select Variable Use Select menu to pick variable

Select Location Click on criterion location to do slice

Navigate Use scroll bar to examine source code

Operations Use Operations menu to combine slices

Exit Click on Exit to return to Main Control Panel

8 Exit Click on Exit to stop unravel

Figure A-1: Unravel Operation Checklist
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